springScape: visualisation of microarray and contextual bioinformatic data using spring embedding and an "information landscape"
نویسندگان
چکیده
The interpretation of microarray and other high-throughput data is highly dependent on the biological context of experiments. However, standard analysis packages are poor at simultaneously presenting both the array and related bioinformatic data. We have addressed this challenge by developing a system springScape based on 'spring embedding' and an 'information landscape' allowing several related data sources to be dynamically combined while highlighting one particular feature. Each data source is represented as a network of nodes connected by weighted edges. The networks are combined and embedded in the 2-D plane by spring embedding such that nodes with a high similarity are drawn close together. Complex relationships can be discovered by varying the weight of each data source and observing the dynamic response of the spring network. By modifying Procrustes analysis, we find that the visualizations have an acceptable degree of reproducibility. The 'information landscape' highlights one particular data source, displaying it as a smooth surface whose height is proportional to both the information being viewed and the density of nodes. The algorithm is demonstrated using several microarray data sets in combination with protein-protein interaction data and GO annotations. Among the features revealed are the spatio-temporal profile of gene expression and the identification of GO terms correlated with gene expression and protein interactions. The power of this combined display lies in its interactive feedback and exploitation of human visual pattern recognition. Overall, springScape shows promise as a tool for the interpretation of microarray data in the context of relevant bioinformatic information.
منابع مشابه
Integration and Reduction of Microarray Gene Expressions Using an Information Theory Approach
The DNA microarray is an important technique that allows researchers to analyze many gene expression data in parallel. Although the data can be more significant if they come out of separate experiments, one of the most challenging phases in the microarray context is the integration of separate expression level datasets that have gathered through different techniques. In this paper, we prese...
متن کاملI-52: Maternal mRNA Metabolism duringOocyte-to-Zygote Transition
Background: Maternal mRNA degradation is a selective process that occurs in waves corresponding to important developmental transitions such as resumption of meiosis, fertilization and zygotic genome activation. It has been demonstrated that the number, position, and combination of 3 UTR cis-acting elements interacting with trans-acting protein factors regulate translation and mRNA stability. Ou...
متن کاملEVALUATION OF HMGA2 AND SMARCA5 GENES EXPRESSION IN 4T1 CELLS EXPOSED TO METHOTREXATE: BIOINFORMATIC AND EXPERIMENTAL STUDY
Background & Aims: Breast cancer is a threatening disease in females and is the second common cancer among women after lung cancer. The aim of this research is to bioinformatically and experimentally evaluate the effect of methotrexate (MTX) on the expression of HMGA2 and SMARCA5 genes in the MTX treated 4T1 cancer cell line. Materials & Methods: To perform this study, initially microarray dat...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 22 14 شماره
صفحات -
تاریخ انتشار 2006